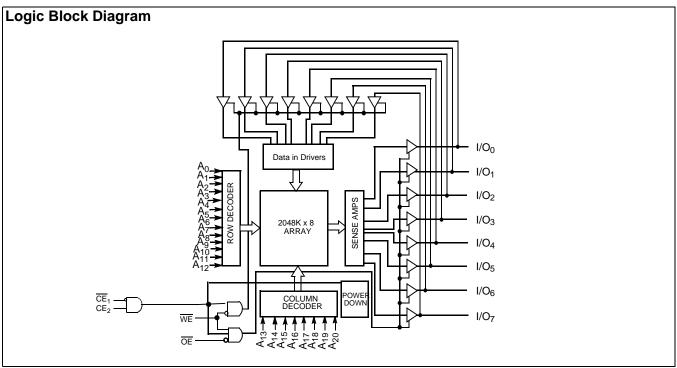


16-Mbit (2M x 8) MoBL® Static RAM

Features

- · Very high speed
 - 55 ns
- · Wide voltage range
 - 2.2V 3.6V
- · Ultra-low active power
 - Typical active current: 2 mA @ f = 1 MHz
 - Typical active current: 15 mA @ f = f_{Max} (55 ns Speed)
- · Ultra-low standby power
- Easy memory expansion with \overline{CE}_1 , \overline{CE}_2 and \overline{OE} features
- · Automatic power-down when deselected
- · CMOS for optimum speed/power
- Available in Pb-free and non Pb-free 48-ball VFBGA package

Functional Description^[1]


The CY62168DV30 is a high-performance CMOS static RAMs organized as 2048Kbit words by 8 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL®) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly

reduces power consumption. The device can be put into standby mode reducing power consumption by 90% when addresses are not toggling. The device can be put into standby mode reducing power consumption by more than 99% when deselected Chip Enable 1 (\overline{CE}_1) HIGH or Chip Enable 2 (\overline{CE}_2) LOW. The input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when: deselected Chip Enable 1 (\overline{CE}_1) HIGH or Chip Enable 2 (\overline{CE}_2) LOW, outputs are disabled (\overline{OE} HIGH), or during a write operation (\overline{Chip} Enable 1 (\overline{CE}_1) LOW and Chip Enable 2 (\overline{CE}_2) HIGH and \overline{WE} LOW).

Writing to the device is accomplished by taking Chip Enable 1 (\overline{CE}_1) LOW and Chip Enable 2 (CE_2) HIGH and Write Enable (WE) input LOW. Data on the eight I/O pins (I/O_0) through I/O_7 is then written into the location specified on the address pins (A_0) through A_{20} .

Reading from the device is accomplished by taking Chip Enable 1 (CE₁) and Output Enable (OE) LOW and Chip Enable 2 (CE₂) HIGH while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected ($\overline{\text{CE}}_1$ LOW and CE_2 HIGH), the outputs are disabled ($\overline{\text{OE}}$ HIGH), or during a write operation ($\overline{\text{CE}}_1$ LOW and CE_2 HIGH and WE LOW). See the truth table for a complete description of read and write modes.

Note:

1. For best-practice recommendations, please refer to the Cypress application note entitled System Design Guidelines, available at http://www.cypress.com.

Pin Configuration^[2]

48-ball VFBGA **Top View**

Product Portfolio

					Power Dissipation				n	
					Operating I _{CC} (mA)					
	V _{CC} Range (V)		Speed	f = 1	MHz	f = 1	Мах	Standby	I _{SB2} (μ A)	
Product	Min.	Typ. ^[3]	Max.	Speed (ns)	Typ. ^[3]	Max.	Typ. ^[3]	Max.	Typ. ^[3]	Max.
CY62168DV30LL	2.2	3.0	3.6	55	2	4	15	30	2.5	22

Notes:

DNU pins have to be left floating or tied to V_{SS} to ensure proper operation.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......–55°C to +125°C Supply Voltage to Ground Potential -0.3V to V_{CC(max)} + 0.3V DC Voltage Applied to Outputs in High-Z State $^{[4,\ 5]}$ -0.3V to $V_{CC(max)}$ + 0.3V

DC Input Voltage ^[4, 5]	$-0.3V$ to $V_{CC(max)} + 0.3V$
Output Current into Outputs (LOW).	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

Range	Ambient Temperature (T _A) ^[6]	V cc ^[7]
Industrial	–40°C to +85°C	2.2V - 3.6V

DC Electrical Characteristics (Over the Operating Range)

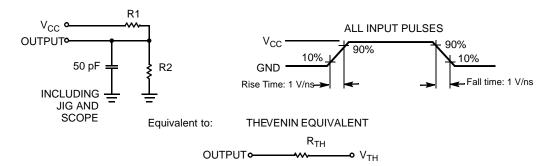
						V30-55	
Parameter	Description	Description Test Conditions		Min.	Typ. ^[3]	Max.	Unit
V _{OH}	Output HIGH Voltage	$2.2V \le V_{CC} \le 2.7V$	$I_{OH} = -0.1 \text{ mA}$	2.0			V
		2.7V ≤ V _{CC} ≤ 3.6V	$I_{OH} = -1.0 \text{ mA}$	2.4			
V _{OL}	Output LOW Voltage	$2.2V \le V_{CC} \le 2.7V$	I _{OL} = 0.1 mA			0.4	V
		2.7V ≤ V _{CC} ≤ 3.6V	I _{OL} = 2.1 mA			0.4	
V _{IH}	Input HIGH Voltage	2.2V ≤ V _{CC} ≤ 2.7V		1.8		V _{CC} + 0.3	V
		2.7V ≤ V _{CC} ≤ 3.6V		2.2		V _{CC} + 0.3	
V _{IL}	Input LOW Voltage	2.2V ≤ V _{CC} ≤ 2.7V				0.6	V
		$2.7V \le V_{CC} \le 3.6V$		-0.3		0.8	
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$		-1		+1	μА
l _{OZ}	Output Leakage Current	GND $\leq V_O \leq V_{CC}$, Outp	out disabled	-1		+1	μА
I _{CC}	V _{CC} Operating Supply Current	$f = f_{Max} = 1/t_{RC}$	V _{CC} = 3.6V,		15	30	mA
		f = 1 MHz	I _{OUT} = 0 mA, CMOS level		2	4	
I _{SB1}	Automatic CE Power-down Current — CMOS Inputs	$\overline{CE}_1 \ge V_{CC} - 0.2V, CE_2 \le 0.2V, \\ V_{IN} \ge V_{CC} - 0.2V, V_{IN} \le 0.2V, \\ f = f_{Max} \text{ (Address and Data Only)}, \\ f = 0 \text{ (OE, } \overline{WE})$			2.5	22	μА
I _{SB2}	Automatic CE Power-down Current— CMOS Inputs	$\overline{\text{CE}}_1 \ge \text{V}_{\text{CC}} - 0.2\text{V}, \text{CE}_2 \le 0.2\text{V}, \\ \text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.2\text{V} \text{ or } \text{V}_{\text{IN}} \le 0.2\text{V}, \\ \text{f} = 0, \text{V}_{\text{CC}} = 3.6\text{V}$			2.5	22	μА

Capacitance^[8]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz, $V_{CC} = V_{CC(typ.)}$	8	pF
C _{OUT}	Output Capacitance		10	pF

Notes:

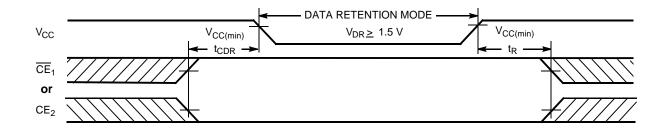
- 4. $V_{IL(min)} = -2.0V$ for pulse durations less than 20 ns.


- V_{IL(min)} = -2.0 V for pulse durations less than 20 ns.
 V_{IH(max)} = V_{CC} + 0.75V for pulse durations less than 20 ns.
 T_A is the "Instant-On" case temperature.
 Full device AC operation assumes a 100 μs ramp time from 0 to V_{CC}(min) and 100 μs wait time after V_{CC} stabilization.
 Tested initially and after any design or process changes that may affect these parameters.

Thermal Resistance^[8]

Parameter	Description	Test Conditions	VFBGA	Unit
Θ_{JA}		Still Air, soldered on a 3 x 4.5 inch, 2-layer printed circuit board	55	°C/W
Θ _{JC}	Thermal Resistance (Junction to Case)		16	°C/W

AC Test Loads and Waveforms



Parameters	2.5V	3.0V	Unit
R1	16600	1103	Ω
R2	15400	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.2	1.75	V

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions	Min.	Typ. ^[3]	Max.	Unit
V _{DR}	V _{CC} for Data Retention		1.5		3.6	V
I _{CCDR}		$\begin{aligned} & \frac{V_{CC}}{CE_1} = 1.5V \\ & \frac{V_{CC}}{CE_1} \ge V_{CC} - 0.2V \text{ or } CE_2 \le 0.2V \\ & V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V \end{aligned}$			10	μА
t _{CDR} ^[8]	Chip Deselect to Data Retention Time		0			ns
t _R ^[9]	Operation Recovery Time		t _{RC}			ns

Data Retention Waveform

Note:

^{9.} Full Device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 100~\mu s$ or stable at $V_{CC(min.)} \ge 100~\mu s$.

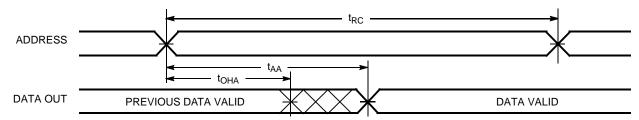
Switching Characteristics Over the Operating Range [10]

		55	ns		
Parameter	Description	Min.	Max.	Unit	
Read Cycle	•		1	J	
t _{RC}	Read Cycle Time	55		ns	
t _{AA}	Address to Data Valid		55	ns	
t _{OHA}	Data Hold from Address Change	10		ns	
t _{ACE}	CE₁ LOW and CE₂ HIGH to Data Valid		55	ns	
t _{DOE}	OE LOW to Data Valid		25	ns	
t _{LZOE}	OE LOW to Low Z ^[11]	5		ns	
t _{HZOE}	OE HIGH to High Z ^[11, 12]		20	ns	
t _{LZCE}	$\overline{\text{CE}}_1$ LOW and CE_2 HIGH to Low $Z^{[11]}$	10		ns	
t _{HZCE}	$\overline{\text{CE}}_1$ HIGH or CE_2 LOW to High $Z^{[11,\ 12]}$		20	ns	
t _{PU}	CE₁ LOW and CE₂ HIGH to Power-Up	0		ns	
t _{PD}	CE₁ HIGH or CE₂ LOW to Power-Down		55	ns	
Write Cycle ^[13]	•		1	J	
t _{WC}	Write Cycle Time	55		ns	
t _{SCE}	CE₁ LOW and CE₂ HIGH to Write End	40		ns	
t _{AW}	Address Set-Up to Write End	40		ns	
t _{HA}	Address Hold from Write End	0		ns	
t _{SA}	Address Set-Up to Write Start	0		ns	
t _{PWE}	WE Pulse Width	40		ns	
t _{SD}	Data Set-Up to Write End	25		ns	
t _{HD}	Data Hold from Write End	0		ns	
t _{HZWE}	WE LOW to High Z ^[11, 12]		20	ns	
t _{LZWE}	WE HIGH to Low Z ^[11]	10		ns	

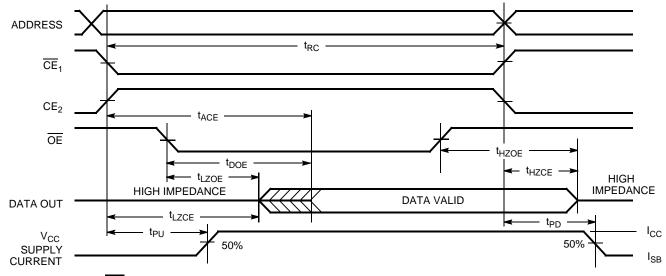
Notes:

10. Test conditions for all parameters other than tri-state parameters assume signal transition time of 3ns or less (1V/ns), timing reference levels of V_{CC(typ.)}/2, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} as shown in the "AC Test Loads and Waveforms" section.

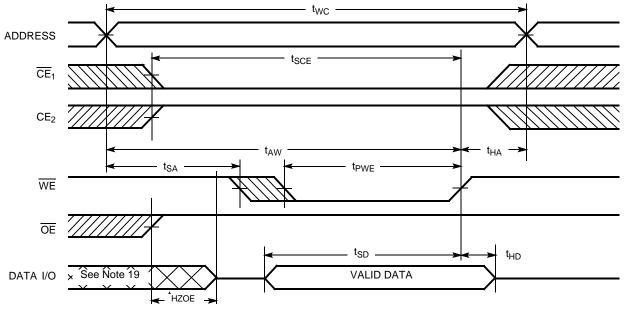
11. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZCE}, and t_{HZWE} for any given device.


12. t_{HZCE}, t_{HZCE}, and t_{HZWE} transitions are measured when the outputs enter a high impedance state.

13. The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{II}, and CE₂ = V_{II}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.



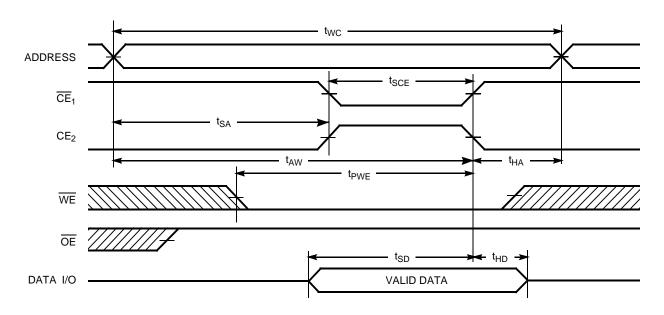
Switching Waveforms


Read Cycle No. 1 (Address Transition Controlled)[14, 15]

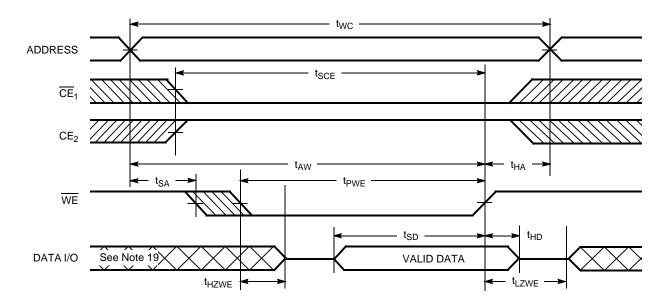
Read Cycle No. 2 (OE Controlled)[15, 16]

Write Cycle No. 1 (WE Controlled)[13, 17, 18]

- 14. <u>Device</u> is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, $CE_2 = V_{IH}$.
- 15. WE is HIGH for read cycle.
- 16. Address valid prior to or coincident with $\overline{\text{CE}}_1$ transition LOW and CE_2 transition HIGH.
- 17. Data I/O is high impedance if \overline{OE}_1 V_{II}.


 18. If \overline{CE}_1 goes HIGH or \overline{CE}_2 goes LOW simultaneously with \overline{WE} HIGH, the output remains in high-impedance state.

 19. During this period, the I/Os are in output state and input signals should not be applied.



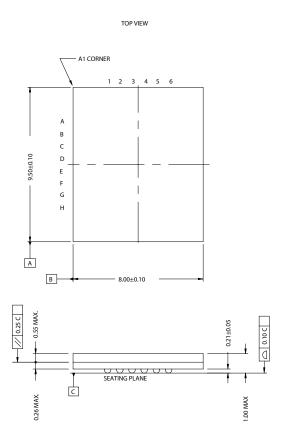
Switching Waveforms (continued)

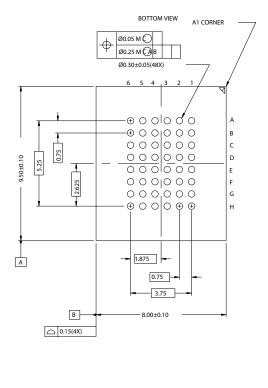
Write Cycle No. 2 ($\overline{\text{CE}}_1$ or CE_2 Controlled)[13, 17, 18]

Write Cycle No. 3 (WE Controlled, OE LOW)[19]

Truth Table

CE ₁	CE ₂	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
Х	L	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	Н	L	Data Out (I/O ₀ -I/O ₇)	Read	Active (I _{CC})
L	Н	L	Х	Data in (I/O ₀ -I/O ₇)	Write	Active (I _{CC})
L	Н	Н	Н	High Z	Output Disabled	Active (I _{CC})


Ordering Information


Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
55	CY62168DV30LL-55BVI	51-85178	48-ball Fine Pitch BGA (8 x 9.5 x 1 mm)	Industrial
	CY62168DV30LL-55BVXI		48-ball Fine Pitch BGA (8 x 9.5 x 1 mm) (Pb-free)	

Please contact your local Cypress sales representative for availability of these parts

Package Diagram

48-ball VFBGA (8 x 9.5 x 1 mm) (51-85178)

51-85178-**

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor. All product and company names mentioned in this document are trademarks of their respective holders.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	118409	09/30/02	GUG	New Data Sheet
*A	123693	02/05/03	DPM	Changed Advance Information to Preliminary Added package diagram
*B	126556	04/24/03	DPM	Minor change: Change sunset owner from DPM to HRT
*C	132869	01/15/04	XRJ	Changed Preliminary to Final
*D	272589	See ECN	PCI	Updated Final data sheet and added Pb-free package.
*E	335864	See ECN	PCI	Removed redundant packages from Ordering Information Table Added Address A ₂₀ to ball G2 in the Pin Configuration
*F	492895	See ECN	VKN	Changed address of Cypress Semiconductor Corporation on Page# 1 from "3901 North First Street" to "198 Champion Court" Removed 70 ns speed bin Removed L power bin from product offering Updated Ordering Information Table